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The disclosed computer-implemented method for detecting
malware using file clustering may include (1) identifying a
file with an unknown reputation, (2) identifying at least one
file with a known reputation that co-occurs with the unknown
file, (3) identitying a malware classification assigned to the
known file, (4) determining a probability that the unknown
file is of the same classification as the known file, and (5)
assigning, based on the probability that the unknown file is of
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1
SYSTEMS AND METHODS FOR DETECTING
MALWARE USING FILE CLUSTERING

BACKGROUND

In recent years, malicious programmers have created a
variety of sophisticated targeted attacks aimed at high-profile
or high-level entities, such as governments, corporations,
political organizations, defense contractors, or the like. In
many cases, the goal of such targeted attacks is to gain access
to highly sensitive or confidential information, such as secu-
rity credentials, financial information, defense-related infor-
mation, and/or intellectual property (e.g., source code), and/
or to simply disrupt an entity’s operations.

Many security software companies attempt to combat tar-
geted attacks by creating and deploying malware signatures
(e.g., hash functions that uniquely identify known malware)
to their customers on a regular basis. However, a significant
number of the above-mentioned attacks involve malware that
has been carefully crafted to take advantage of an as-yet-
undiscovered vulnerability of a particular application (com-
monly known as a “zero-day” exploit). As such, these attacks
are often difficult for traditional security software to detect
and/or neutralize since the exploits in question have yet to be
publicly discovered.

In addition to or as an alternative to a signature-based
approach, some security software companies utilize a variety
of'behavior-based heuristics to detect targeted attacks. Unfor-
tunately, a significant number of targeted attacks (e.g.,
advanced persistent threats) may move at a slow pace such
that traditional security software may be unable to distinguish
individual malicious behaviors of the targeted attacks from
legitimate behaviors, particularly since attacks of this type
may involve the use of benign software and/or the actions of
authorized users, which are generally not detected either by
malware signatures or behavior-based heuristics.

Both the high stakes involved and the changing nature of
threats create an increasing need to detect malware as early as
possible, before data loss, system compromise, or other dam-
age occurs. Accordingly, the instant disclosure identifies and
addresses a need for improved systems and methods for
detecting malware.

SUMMARY

As will be described in greater detail below, the instant
disclosure describes various systems and methods for using
file clustering to detect malware based on an assumption that
unknown files that frequently co-occur with malware files are
more likely to include malware than files that frequently
co-occur with files known to be safe. In one example, a
computer-implemented method for performing such a task
may include (1) identifying a file with an unknown reputa-
tion, (2) identifying at least one file with a known reputation
that co-occurs with the unknown file, (3) identifying a mal-
ware classification assigned to the known file, (4) determin-
ing the probability that the unknown file is of the same clas-
sification as the known file, and (5) assigning, based on the
probability that the unknown file is of the same classification
as the known file, the classification of the known file to the
unknown file.

In some examples, identifying the unknown file may
include (1) obtaining, from at least one additional client
device, information that identifies the unknown file, (2) que-
rying, using the information that identifies the unknown file,
a file reputation database, and (3) receiving, in response to
querying the file reputation database, an indication that the
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2

unknown file’s reputation is unknown. In some examples,
identifying the classification assigned to the known file may
include (1) querying, using information that identifies the
known file, a file reputation database and (2) receiving, in
response to querying the file reputation database, a reputation
for the known file that indicates the known file’s trustworthi-
ness.

In some examples, identifying the known file that co-oc-
curs with the unknown file may include (1) identifying a set of
client devices on which the known file occurs, (2) identifying
a set of client devices on which the unknown file occurs, and
(3) comparing the sets of client devices to identify the client
devices on which the known file co-occurs with the unknown
file. In some examples, determining the probability that the
unknown file is of the same classification as the known file
may include calculating the Jaccard similarity between the
sets of client devices on which the known and unknown files
occur by dividing the number of client devices on which the
known file co-occurs with the unknown file by the number of
client devices on which either the known file or the unknown
file occurs. In addition, determining the probability that the
unknown file is of the same classification as the known file
may include clustering the sets of client devices using at least
one hashing function that assigns sets of client devices to
clusters according a client device selected from the set of
client devices on which the known file or the unknown file
occur.

In one embodiment, assigning the classification of the
known file to the unknown file based on the probability that
the unknown file is of the same classification as the known file
may include (1) constructing a bipartite graph including a set
of cluster nodes representing each client device cluster and a
set of file nodes representing the known file and the unknown
file, where cluster nodes are connected through edges to file
nodes according to the occurrence of the file corresponding to
the file node on the set of client devices represented by the
cluster node, and (2) iteratively propagating the classification
of the known file to the unknown file according to the prob-
ability that the unknown file is of the same classification as the
known file.

In one embodiment, iteratively propagating the classifica-
tion of the known file to the unknown file may include (1)
determining a prior for each cluster node in the graph based
on an assessment of the probability that the client devices
represented by the cluster node contain malware, (2) deter-
mining a prior of each file node in the graph based on an
assessment of the probability that the file represented by the
file node includes malware, (3) determining an edge potential
for each edge in the graph based on a relationship between
nodes connected by the edge, (4) iteratively propagating the
probability of the known file among the nodes by transmitting
messages along the edges in the graph, where the message
transmitted by the node is generated based on the prior of the
node and messages received by the node during any previous
iteration, and (5) determining a classification for the unknown
file based on the probability associated with the correspond-
ing file node. In one embodiment, iteratively propagating the
classification terminates when (1) the probability for the file
node representing the unknown file converges within a
threshold value and/or (2) a predetermined number of itera-
tions have been completed.

In one embodiment, a system for implementing the above-
described method may include several modules stored in
memory, such as (1) an identification module that identifies a
file with an unknown reputation and at least one file with a
known reputation that co-occurs with the unknown file, (2) a
reputation module that identifies a classification assigned to
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the known file, (3) an evaluation module that determines the
probability that the unknown file is of the same classification
as the known file, (4) an classification module that assigns,
based on the probability that the unknown file is of the same
classification as the known file, the classification of the
known file to the unknown file, and (5) at least one physical
processor configured to execute the identification module, the
reputation module, the evaluation module, and the classifica-
tion module.

In some examples, the above-described method may be
encoded as computer-readable instructions on a non-transi-
tory computer-readable medium. For example, a computer-
readable medium may include one or more computer-execut-
able instructions that, when executed by at least one processor
of'a computing device, may cause the computing deviceto (1)
identify an unknown file with an unknown reputation, (2)
identify at least one known file with a known reputation that
co-occurs with the unknown file, (3) identify a classification
assigned to the known file, (4) determine the probability that
the unknown file is of the same classification as the known
file, and (5) assign, based on the probability that the unknown
file is of the same classification as the known file, the classi-
fication of the known file to the unknown file.

Features from any of the above-mentioned embodiments
may be used in combination with one another in accordance
with the general principles described herein. These and other
embodiments, features, and advantages will be more fully
understood upon reading the following detailed description in
conjunction with the accompanying drawings and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings illustrate a number of exem-
plary embodiments and are a part of the specification.
Together with the following description, these drawings dem-
onstrate and explain various principles of the instant disclo-
sure.

FIG. 1 is a block diagram of an exemplary system for
detecting malware using file clustering.

FIG. 2 is a block diagram of an additional exemplary sys-
tem for detecting malware using file clustering.

FIG. 3 is a flow diagram of an exemplary method for
detecting malware using file clustering.

FIG. 4 is a block diagram of an exemplary system for
clustering files using a hashing function.

FIG. 5 is a block diagram of an exemplary system for
propagating the classification of a known file to an unknown
file based on co-occurrence probability.

FIG. 6 is a block diagram of an exemplary computing
system capable of implementing one or more of the embodi-
ments described and/or illustrated herein.

FIG. 7 is a block diagram of an exemplary computing
network capable of implementing one or more of the embodi-
ments described and/or illustrated herein.

Throughout the drawings, identical reference characters
and descriptions indicate similar, but not necessarily identi-
cal, elements. While the exemplary embodiments described
herein are susceptible to various modifications and alternative
forms, specific embodiments have been shown by way of
example in the drawings and will be described in detail
herein. However, the exemplary embodiments described
herein are not intended to be limited to the particular forms
disclosed. Rather, the instant disclosure covers all modifica-
tions, equivalents, and alternatives falling within the scope of
the appended claims.
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DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

The present disclosure is generally directed to systems and
methods for using file clustering to detect malware. As will be
explained in greater detail below, since unknown files that
frequently co-occur with malware files are more likely to
include malware than files that frequently co-occur with files
known to be safe, the systems described herein may classify
previously unknown files as safe or malicious with a high
degree of certainty and with a limited expenditure of comput-
ing resources by (1) determining the probability that a file
with an unknown reputation is of the same classification as a
known file based at least in part on the number of devices on
which the files co-occur and then (2) propagating a malware
classification to the unknown file based on the determined
probability. By so doing, the systems and methods described
herein may identify potential threats before they are encoun-
tered elsewhere and before any damage or loss is incurred. In
addition, unlike other systems for detecting malware, the
systems and methods described herein may identify targeted
threats that appear only on computing devices with low infec-
tion rates, but that were infected by a particular, known tar-
geted threat in the past. Finally, once a potential threat has
been identified, the systems described herein may leverage
these underlying file relationships to identify additional vul-
nerabilities that conventional security software may fail to
detect.

The following will provide, with reference to FIGS. 1-2,
detailed descriptions of exemplary systems for detecting mal-
ware using file clustering. Detailed descriptions of corre-
sponding computer-implemented methods will also be pro-
vided in connection with FIG. 3. In addition, detailed
descriptions of an exemplary computing system and network
architecture capable of implementing one or more of the
embodiments described herein will be provided in connection
with FIGS. 6 and 7, respectively.

FIG. 1 is a block diagram of an exemplary system 100 for
detecting malware using file clustering. As illustrated in this
figure, exemplary system 100 may include one or more mod-
ules 102 for performing one or more tasks. For example, and
as will be explained in greater detail below, exemplary system
100 may also include an identification module 104 pro-
grammed to identify both an unknown file with an unknown
reputation and a file with a known reputation that co-occurs
with the unknown file. Exemplary system 100 may addition-
ally include a reputation module 106 programmed to identify
a classification (safe or malicious, for example) assigned to
the known file.

Exemplary system 100 may additionally include an evalu-
ation module 108 programmed to determine the probability
that the unknown file is of the same classification as the
known file. Exemplary system 100 may also include a clas-
sification module 110 programmed to assign, based on the
probability that the unknown file is of the same classification
as the known file, the classification of the known file to the
unknown file. Although illustrated as separate elements, one
or more of modules 102 in FIG. 1 may represent portions of a
single module or application.

In certain embodiments, one or more of modules 102 in
FIG. 1 may represent one or more software applications or
programs that, when executed by a computing device, may
cause the computing device to perform one or more tasks. For
example, and as will be described in greater detail below, one
or more of modules 102 may represent software modules
stored and configured to run on one or more computing
devices, such as the devices illustrated in FIG. 2 (e.g., back-
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end 202 and/or reputation server 206), computing system 610
in FIG. 6, and/or portions of exemplary network architecture
700 in FIG. 7. One or more of modules 102 in FIG. 1 may also
represent all or portions of one or more special-purpose com-
puters configured to perform one or more tasks.

As illustrated in FIG. 1, exemplary system 100 may also
include one or more databases, such as reputation database
120. In one example, reputation database 120 may be config-
ured to store data (such as reputation scores 208 in FIG. 2) that
indicates the trustworthiness of various objects or entities,
such as files or file publishers. Reputation database 120 may
represent portions of a single database or computing device or
a plurality of databases or computing devices. For example,
reputation database 120 may represent a portion of backend
202 and/or reputation server 206 in FIG. 2, computing system
610 in FIG. 6, and/or portions of exemplary network archi-
tecture 700 in FIG. 7. Alternatively, reputation database 120
in FIG. 1 may represent one or more physically separate
devices capable of being accessed by a computing device,
such as backend 202 and/or reputation server 206 in FIG. 2,
computing system 610 in FIG. 6, and/or portions of exem-
plary network architecture 700 in FIG. 7.

Exemplary system 100 in FIG. 1 may be implemented in a
variety of ways. For example, all or a portion of exemplary
system 100 may represent portions of exemplary system 200
in FIG. 2. As shown in FIG. 2, system 200 may include a
backend 202 in communication with a reputation server 206
via a network 204. In one example, backend 202 may be
programmed with one or more of modules 102 and/or may
store all or a portion of the data in reputation database 120.
Additionally or alternatively, reputation server 206 may be
programmed with one or more of modules 102 and/or may
store all or a portion of the data in reputation database 120.

In one embodiment, one or more of modules 102 from FIG.
1 may, when executed by at least one processor of backend
202 and/or reputation server 206, enable backend 202 and/or
reputation server 206 to detect malware using file clustering.
For example, and as will be described in greater detail below,
identification module 104 may identify an unknown file 212
with an unknown reputation. Identification module 104 may
also identify at least one known file 214 with a known repu-
tation that co-occurs with unknown file 212 on one or more
client devices 210. Reputation module 106 may then identify
a classification 216 assigned to known file 214. In response,
evaluation module 108 may determine a probability 218 that
unknown file 212 is of the same classification as known file
214. Classification module 110 may then assign, based on
probability 218 that unknown file 212 is of the same classifi-
cation 216 as known file 214, classification 216 of known file
214 to unknown file 212.

Backend 202 and reputation server 206 generally represent
any type or form of computing device that is capable of
storing, comparing, and/or providing data. Examples of back-
end 202 and reputation server 206 include, without limitation,
application servers and database servers configured to pro-
vide various database services and/or run certain software
applications. In some examples, and as illustrated in FIG. 2,
backend 202 and reputation server 206 may represent sepa-
rate and discrete computing devices. In other examples, how-
ever, backend 202 and reputation server 206 may represent
portions of a single computing device, such as a device oper-
ated and maintained by a security software publisher.

Network 204 generally represents any medium or architec-
ture capable of facilitating communication or data transfer.
Examples of network 204 include, without limitation, an
intranet, a Wide Area Network (WAN), a Local Area Network
(LAN), a Personal Area Network (PAN), the Internet, Power
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Line Communications (PLC), a cellular network (e.g., a Glo-
bal System for Mobile Communications (GSM) network),
exemplary network architecture 700 in FIG. 7, or the like.
Network 204 may facilitate communication or data transfer
using wireless or wired connections. In one embodiment,
network 204 may facilitate communication between backend
202 and reputation server 206.

FIG. 3 is a flow diagram of an exemplary computer-imple-
mented method 300 for detecting malware using file cluster-
ing. The steps shown in FIG. 3 may be performed by any
suitable computer-executable code and/or computing system.
In some embodiments, the steps shown in FIG. 3 may be
performed by one or more of the components of system 100 in
FIG. 1, system 200 in FIG. 2, computing system 610 in FIG.
6, and/or portions of exemplary network architecture 700 in
FIG. 7.

As illustrated in FIG. 3, at step 302 one or more of the
systems described herein may identify an unknown file with
an unknown reputation. For example, at step 302 identifica-
tion module 104 may identify, as part of backend 202 in FIG.
2, an unknown file 212 with an unknown reputation on one or
more of client devices 210.

Theterm “reputation,” as used herein, generally refers to an
indication of the trustworthiness, prevalence, prominence,
community opinion, and/or reputation of an object or entity,
such as a file or publisher. Reputations may be based on a
variety of factors, such as the percentage of devices or number
of devices on which a file occurs (e.g., the prevalence of a
software program in a wide area network, on the Internet,
and/or on devices and networks outside a local network, etc.),
the length of time a file has been present on one or more
devices, an indication of the reliability of a publisher or devel-
oper of a file, an indication of the likelihood that a file may
contain malware, a community rating of a file, an evaluation
of'the a by a trusted entity, and/or any other suitable factor. In
some examples, the systems described herein may quantify
the factors of a file’s reputation. In these examples, the sys-
tems described here may weight and/or combine two or more
factors of a reputation score to yield a single numerical value
or reputation score.

Identification module 104 may identify an unknown file in
a variety of ways. In some examples, identification module
104 may identify the unknown file by (1) obtaining, from at
least one client device, information that identifies the
unknown file, (2) querying, using the information that iden-
tifies the unknown file, a file reputation database that associ-
ates file information with file reputations, and (3) receiving, in
response to querying the file reputation database, an indica-
tion that the unknown file’s reputation is unknown. For
example, identification module 104 may receive, from secu-
rity software installed on one of client devices 210, a request
for reputation information for an unknown file 212 encoun-
tered by the security software. In this example, the reputation
request may include a file hash that uniquely identifies the file
in question. Identification module 104 may then query, using
the file hash, reputation database 120 to determine the repu-
tation of the file. In this example, reputation database 120 may
determine that the reputation of unknown file 212 is unknown
(due to, e.g., lacking information sufficient to determine the
trustworthiness of the file and/or due to lacking an entry
matching the file hash). Upon making this determination,
reputation database 120 may send a response to identification
module 104 that indicates that the file’s reputation is
unknown.

In some examples, the systems described herein may con-
tinually collect and store information about files from thou-
sands or potentially millions of computing devices within a
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computing community, such as an enterprise or the user base
of a security software publisher. For example, security soft-
ware installed on computing devices within the user base of a
security software publisher (such as client devices 210) may
send information that identifies files encountered by these
devices when sending reputation queries for these files to
backend 202 and/or reputation server 206 (which may, in this
example, be maintained and/or operated by the security soft-
ware publisher). By so doing, the systems described herein
may automatically and continually discover new files as these
files are encountered by potentially millions of devices during
their normal course of operation.

At step 304, the systems described herein may identify at
least one known file with a known reputation that co-occurs
with the unknown file. For example, at step 304 identification
module 104 may, as part of backend 202 in FIG. 2, identify at
least one known file 214 with a known reputation that co-
occurs with unknown file 212 on one or more of client devices
210.

Identification module 104 may identify a known file that
co-occurs with the unknown file in any suitable manner. In
some examples, identification module 104 may identify a
known file that co-occurs with an unknown file by (1) iden-
tifying a set of client devices on which the known file occurs,
(2) identifying a set of client devices on which the unknown
file occurs, and (3) comparing the sets of client devices to
identify the client devices on which the known file co-occurs
with the unknown file. For example, and as will be described
in greater detail below in connection with steps 308 and 310,
identification module 104 may maintain a database that iden-
tifies the client devices on which files (such as unknown file
212 and known file 214) have occurred. In this example,
identification module 104 may query the database to deter-
mine the sets of clients devices on which files 212 and 214
co-occur.

As detailed above, unknown files that frequently co-occur
with malware files are more likely to include malware than
files that frequently co-occur with files known to be safe. The
strength of these co-occurrences relationships may have sev-
eral underlying explanations. For example, separate malware
exploits may be designed to take advantage of the same vul-
nerability. Specifically, a computing device with a particular
operating system version or lacking a particular system patch
may be attacked by separate malware instances that install
multiple malware files on the same device. In another
example, certain organizations or industries may be targeted
by hacker organizations, resulting in multiple malware
attacks on a set of computing devices used in those organiza-
tions or industries. User behavior may also result in multiple
malware infections on a set of one or more computing
devices. Similarly, users who visit unsafe network sites or
neglect security safeguards may be prone to frequent malware
infections. As will be described in greater detail below, the
systems described herein may leverage this information to
identify and classify unknown files that frequently co-occur
with known files.

At step 306, one or more of the systems described herein
may identify a classification assigned to the known file. For
example, at step 306 reputation module 106 may, as part of
backend 202 in FIG. 2, identify a classification 216 assigned
to known file 214 by querying reputation database 120.

Asused herein, the term “classification” generally refers to
an assessment of a file’s reputation based on a variety of
factors, such as a reputation score and/or file prevalence.
Examples of file classifications include, without limitation,
known good, known bad, and unknown. In some examples,
the systems described herein may add additional classifica-
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tions to indicate, in addition to a file’s reputation, additional
information, such as the file’s prevalence.

Reputation module 106 may identify a classification for a
known file in any suitable manner. In some examples, iden-
tification module 104 may identify a classification assigned to
aknown file by (1) querying, using information that identifies
the known file, a file reputation database that associates file
information with file reputations and (2) receiving, in
response to querying the file reputation database, a reputation
for the known file that indicates the known file’s trustworthi-
ness. For example, identification module 104 may receive a
query from one of client devices 210 for a reputation score
208 for known file 214. In this example, the query may
include a signature hash that uniquely identifies known file
214. Identification module 104 may then query (using, e.g.,
the file’s hash) reputation database 120 to obtain a reputation
for known file 214. In one example, reputation module 106
may assign a classification selected from known good, known
bad, and unknown based on a reputation score received from
reputation database 120.

At step 308, one or more of the systems described herein
may determine the probability that the unknown file is of the
same classification as theknown file. For example, at step 308
evaluation module 108 may, as part of backend 202 in FIG. 2,
determine the probability 218 that unknown file 212 is of the
same classification 216 as known file 214.

The systems described herein may determine the probabil-
ity that the unknown file is of the same classification as the
known file in a variety of ways. For example, evaluation
module 108 may identify the probability that the unknown file
is of the same classification as the known file by calculating
the Jaccard similarity between the set of client devices on
which the known file co-occurs and the set of client devices on
which the unknown file co-occurs.

The term “Jaccard similarity,” as used herein, generally
refers to ameasure of the similarity of two sets. Where the two
sets are the sets of client devices on which the known and
unknown files occur, the Jaccard similarity represents the
strength of the co-occurrence of the two files. In some
examples, evaluation module 108 may calculate the Jaccard
similarity by dividing the number of client devices on which
the known file co-occurs with the unknown file by the number
of client devices on which either the known file or the
unknown file occurs. In one example, the Jaccard similarity
represents the number of client devices in the intersection of
the sets of devices on which the known and unknown files
occur, divided by the number of client devices in the union of
the same sets.

In some examples, evaluation module 108 may identify the
probability that the unknown file is of the same classification
as the known file by clustering the sets of client devices using
atleast one hashing function that assigns sets of client devices
to clusters according a client device selected from the set of
client devices on which the known file and the unknown file
occur. Since calculating the Jaccard similarity between the
sets of devices on which files co-occur may quickly become
computation-intensive as the number of devices and files
increases, in some examples evaluation module 108 may
estimate the similarity between two sets using hash functions
to create clusters of devices containing each of the files.

FIG. 4 is a block diagram of an exemplary system 400 for
clustering files using a hashing function known as MinHash-
ing. The term “MinHash,” as used herein, is a shortened name
for an operation known as Minwise Independent Permutation
Hashing. As detailed below, the systems described herein
may use MinHashing to efficiently estimate the Jaccard simi-
larity of two sets.
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As illustrated in FIG. 4, exemplary system 400 includes
eight client devices 410-480, with consecutive device num-
bers 1-8. In this example, each device contains one or more of
three files, numbered 1, 2, and 3. A selected hash function
randomly maps each of (n) client devices (D) to consecutive
ordinal numbers {1, ..., D(n)}. For example, as illustrated in
FIG. 4, client device 410 has a device number of 1, a hash
value of 3, and contains one file: file 3. Device clusters 490,
492, and 494 are the sets of devices on which each of the three
files occur. The similarity between the device clusters may
then be estimated by obtaining the MinHash value associated
with each cluster. In this figure, the MinHash value for each
device cluster is defined as the minimum hash value associ-
ated with a device in the device cluster. For example, device
cluster 490 includes devices 2, 4, 5, and 8. As such, the
minimum hash value associated with a device in the cluster is
4, associated with device 4. Similarly, both device clusters
492 and 494 have MinHash values of 1, since both clusters
include device 7.

Even with the small number of files and devices in the
example depicted in FIG. 4, the equal MinHash values for
device clusters 492 and 494 indicate the similarity of the sets
of devices on which files 2 and 3 occur. In this example, the
results are similar to the results that would have been obtained
by calculating the Jaccard similarity of the sets of devices.
The Jaccard similarity between the sets of devices in device
clusters 492 and 494 is equal to 35, while the Jaccard similar-
ity value for device clusters 490 and 492 is only Y, and for
device clusters 490 and 494 is only 5.

While MinHashing may be used to obtain a rough or initial
estimate of the strength of the co-occurrence of two files, the
systems and methods described herein may also obtain a
more precise measure of co-occurrence strength by applying
multiple, related hash functions using a technique known as
locality-sensitive hashing (LSH). The term “locality-sensi-
tive hashing,” as used herein, generally refers to a technique
for high dimensional clustering that uses multiple hash func-
tions to map items into clusters, such that similar items are
more likely to be hashed to the same cluster. LSH uses local-
ity-sensitive function families, where each function provides
upper and lower bounds on the probability that two similar
items will receive the same hash value. The hash functions
that randomly map each of (n) client devices (D) to consecu-
tive ordinal numbers {1, . . ., D(n)}, as described above,
constitute a locality-sensitive function family for the Jaccard
similarity. There are locality-sensitive function families
defined for other similarity and distance measures, such as the
Hamming distance and earth mover’s distance (EMD). The
results of each hash function may be amplified by combining
values returned from multiple functions using logical AND
and/or OR. With n random permutation (hash) functions, n
MinHash values may be generated and combined in multiple
ways. For example, n MinHash values may be partitioned into
b bands, each containing r values, such that n=bxr, where a
band includes multiple clusters of files, clustered by MinHash
value. Combining hash functions in this way may amplify the
similarity of the co-occurrence of two files with different
MinHash values, resulting in the files being assigned to the
same band.

Returning to FIG. 3, at step 310 one or more of the systems
described herein may assign, based on the probability that the
unknown file is of the same classification as the known file,
the classification of the known file to the unknown file. For
example, at step 310 classification module 110 may, as part of
backend 202 in FIG. 2, assign, based on probability 218 that
unknown file 212 is of the same classification as known file
214, classification 216 of known file 214 to unknown file 212.
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Classification module 110 may assign the probability of
the known file to the unknown file in a variety of ways. In one
embodiment, identification module 104 may identify, based
on the probability that the unknown file is of the same clas-
sification as the known file, the classification of the known file
to the unknown file by (1) constructing a bipartite graph that
includes a set of cluster nodes representing each client device
cluster and a set of file nodes representing the known file and
the unknown file, where cluster nodes are connected by edges
to file nodes according to the occurrence of the file corre-
sponding to the file node on the set of client devices repre-
sented by the cluster node, and (2) iteratively propagating the
classification of the known file to the unknown file according
to the probability that the unknown file is of the same classi-
fication as the known file.

The term “bipartite graph,” as used herein, generally refers
to a graph consisting of two disjoint sets of nodes, with edges
that connect one member selected from each set. FIG. 5,
which is a block diagram of an exemplary system 500 for
propagating the classification of a known file to an unknown
file based on co-occurrence probability, depicts how a bipar-
tite graph may be used to propagate the probability that a
known file includes malware to an unknown file. As illus-
trated in this figure, exemplary system 500 includes a bipar-
tite graph consisting of a set of cluster nodes 510 and a set of
file nodes 520. The set of cluster nodes 510 includes three file
clusters, 512, 514, and 516. In this example, the bipartite
graph depicted in FIG. 5 may be constructed by creating the
set of file nodes 520 representing each file in file clusters 512,
514, and 516, and connecting each file node in the set of file
nodes 520 to each file cluster that contains the file node.

In one embodiment, the systems described herein may
iteratively propagate the classification of the known file to the
unknown file by (1) determining a prior for each cluster node
in the graph based on an assessment of a probability that the
client devices represented by the cluster node contain mal-
ware, (2) determining a prior of each file node in the graph
based on an assessment of a probability that the file repre-
sented by the file node includes malware, (3) determining an
edge potential for each edge in the graph based on a relation-
ship between nodes connected by the edge, (4) iteratively
propagating the probability of the known file among the
nodes by transmitting messages along the edges in the graph,
where the message transmitted by the node is generated based
on the prior of the node and messages received by the node
during any previous iteration, and (5) determining a classifi-
cation for the unknown file, based on the probability associ-
ated with the corresponding file node.

The term “prior,” as used herein, generally refers to data
associated with a node in a graph that represents prior knowl-
edge about the node. A prior may include various forms of
data, such as a single value, a set of values, or a function. In a
procedure operating on a graph, priors may be set to initial
values that may be modified as the procedure is executed. The
value of a prior at any given time may then be considered to be
a state, representing all cumulative knowledge associated
with the node, from the initial state, through each step or
iteration of the procedure. The term “message,” as used
herein, generally refers to data passed between adjacent
nodes in a graph, along edges. Messages transform prior data
associated with the node receiving the message, according to
prior data associated with the node sending the message. A
message may be transformed as it is sent from a sending node
to a receiving node by an edge potential associated with the
edge along which the message is sent. The term “edge poten-
tial,” as used herein, generally refers to a function associated
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with an edge in a graph that transforms a node’s incoming
messages to the node’s outgoing messages.

For example, classification module 110 may propagate
known file classification 216 for known file 214 to unknown
file 212 to assign unknown file classification 220. To do so,
identification module 104 may construct a bipartite graph
similar to exemplary system 500, shown in FIG. 5. Classifi-
cation module 110 may determine priors for file cluster nodes
512, 514, and 516, based on an assessment of the probability
of'the file cluster containing malware. Classification module
110 may also determine priors for each of the file nodes
included in file nodes 520 based on an assessment of the
probability that each file represented by a node includes mal-
ware. Classification module 110 may then determine an edge
potential for each edge connecting a file node 520 to one of
the cluster nodes 510. Classification module 110 may then
iteratively propagate the probability associated with the node
representing known file 214 to the node representing
unknown file 212 by transmitting messages along the edges of
the graph based on the prior of the node and messages
received during any previous iteration. When classification
module 110 determines that the iterative process is com-
pleted, classification module 110 may determine a classifica-
tion 220 for unknown file 212 based on the probability asso-
ciated with the corresponding file node.

Classification module 110 may set priors for file and file
cluster nodes according to prior knowledge of the domain in
which the files occur. For example, classification module 110
may set priors for file cluster nodes to 0.5 so that the file
clustering has a neutral effect on the propagation of probabili-
ties, and the probability that an unknown file contains mal-
ware is calculated based only on the reputation of known files
with which it co-occurs. Classification module 110 may set
edge potentials to reflect the domain knowledge that an
unknown file that occurs with files known to be good is likely
to be good as well. For example, classification module 110
may set an edge potential to assign a 0.9 probability that a
good file is connected to a good file cluster node and a 0.1
probability of being connected to a bad cluster node (a cluster
node containing malware). Conversely, classification module
110 may set an edge potential to assign a 0.9 probability that
abad file is connected to abad file cluster and a 0.1 probability
of’being connected to a good cluster node. Once classification
module 110 has assigned priors and edge potential functions
to the nodes and edges of the bipartite graph, respectively,
classification module 110 may propagate probabilities itera-
tively by passing messages containing a node’s probability,
along edges to neighboring nodes, with each message being
transformed by the edge’s associated edge potential as the
message is passed. Classification module 110 may then deter-
mine when the iteration should terminate, as described below.

In one embodiment, the systems descried herein may ter-
minate the iterative propagation of the classification when (1)
the probability for the file node representing the unknown file
converges within a threshold value and/or (2) a predetermined
number of iterations have been completed. For example, clas-
sification module 110 may terminate the iterative propagation
of known file classification 216 for the node representing
known file 214 to the node representing unknown file 212
when the probability associated with the node representing
unknown file 212 converges within a threshold value, indi-
cating a classification 220 for unknown file 212. Although the
method described herein is not guaranteed to converge, in
practice, convergence may begin within a few iterations. In
addition, the systems described herein may set a limit on the
number of iterations to be performed to guarantee that itera-
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tion terminates. For example, the systems described herein
may select a limit of 50 iterations.

As explained above, since unknown files that frequently
co-occur with malware files are more likely to include mal-
ware than files that frequently co-occur with files known to be
safe, the systems described herein may classify previously
unknown files as safe or malicious with a high degree of
certainty and with a limited expenditure of computing
resources by (1) determining the probability that a file with an
unknown reputation is of the same classification as a known
file based at least in part on the number of devices on which
the files co-occur and then (2) propagating a malware classi-
fication to the unknown file based on the determined prob-
ability. By so doing, the systems and methods described
herein may identify potential threats before they are encoun-
tered elsewhere and before any damage or loss is incurred. In
addition, unlike other systems for detecting malware, the
systems and methods described herein may identify targeted
threats that appear only on computing devices with low infec-
tion rates, but that were infected by a particular, known tar-
geted threat in the past. Finally, once a potential threat has
been identified, the systems described herein may leverage
these underlying file relationships to identify additional vul-
nerabilities that conventional security software may fail to
detect.

FIG. 6 is a block diagram of an exemplary computing
system 610 capable of implementing one or more of the
embodiments described and/or illustrated herein. For
example, all or a portion of computing system 610 may per-
form and/or be a means for performing, either alone or in
combination with other elements, one or more of the steps
described herein (such as one or more of the steps illustrated
in FIG. 3). All or a portion of computing system 610 may also
perform and/or be a means for performing any other steps,
methods, or processes described and/or illustrated herein.

Computing system 610 broadly represents any single or
multi-processor computing device or system capable of
executing computer-readable instructions. Examples of com-
puting system 610 include, without limitation, workstations,
laptops, client-side terminals, servers, distributed computing
systems, handheld devices, or any other computing system or
device. In its most basic configuration, computing system 610
may include at least one processor 614 and a system memory
616.

Processor 614 generally represents any type or form of
physical processing unit (e.g., a hardware-implemented cen-
tral processing unit) capable of processing data or interpret-
ing and executing instructions. In certain embodiments, pro-
cessor 614 may receive instructions from a software
application or module. These instructions may cause proces-
sor 614 to perform the functions of one or more of the exem-
plary embodiments described and/or illustrated herein.

System memory 616 generally represents any type or form
of volatile or non-volatile storage device or medium capable
of storing data and/or other computer-readable instructions.
Examples of system memory 616 include, without limitation,
Random Access Memory (RAM), Read Only Memory
(ROM), flash memory, or any other suitable memory device.
Although not required, in certain embodiments computing
system 610 may include both a volatile memory unit (such as,
for example, system memory 616) and a non-volatile storage
device (such as, for example, primary storage device 632, as
described in detail below). In one example, one or more of
modules 102 from FIG. 1 may be loaded into system memory
616.

In certain embodiments, exemplary computing system 610
may also include one or more components or elements in
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addition to processor 614 and system memory 616. For
example, as illustrated in FIG. 6, computing system 610 may
include a memory controller 618, an Input/Output (I/O) con-
troller 620, and a communication interface 622, each of which
may be interconnected via a communication infrastructure
612. Communication infrastructure 612 generally represents
any type or form of infrastructure capable of facilitating com-
munication between one or more components of a computing
device. Examples of communication infrastructure 612
include, without limitation, a communication bus (such as an
Industry Standard Architecture (ISA), Peripheral Component
Interconnect (PCI), PCI Express (PCle), or similar bus) and a
network.

Memory controller 618 generally represents any type or
form of device capable of handling memory or data or con-
trolling communication between one or more components of
computing system 610. For example, in certain embodiments
memory controller 618 may control communication between
processor 614, system memory 616, and 1/O controller 620
via communication infrastructure 612.

1/O controller 620 generally represents any type or form of
module capable of coordinating and/or controlling the input
and output functions of a computing device. For example, in
certain embodiments I/O controller 620 may control or facili-
tate transfer of data between one or more elements of com-
puting system 610, such as processor 614, system memory
616, communication interface 622, display adapter 626, input
interface 630, and storage interface 634.

Communication interface 622 broadly represents any type
or form of communication device or adapter capable of facili-
tating communication between exemplary computing system
610 and one or more additional devices. For example, in
certain embodiments communication interface 622 may
facilitate communication between computing system 610 and
a private or public network including additional computing
systems. Examples of communication interface 622 include,
without limitation, a wired network interface (such as a net-
work interface card), a wireless network interface (such as a
wireless network interface card), a modem, and any other
suitable interface. In at least one embodiment, communica-
tion interface 622 may provide a direct connection to aremote
server via a direct link to a network, such as the Internet.
Communication interface 622 may also indirectly provide
such a connection through, for example, a local area network
(such as an Ethernet network), a personal area network, a
telephone or cable network, a cellular telephone connection,
a satellite data connection, or any other suitable connection.

In certain embodiments, communication interface 622
may also represent a host adapter configured to facilitate
communication between computing system 610 and one or
more additional network or storage devices via an external
bus or communications channel. Examples of host adapters
include, without limitation, Small Computer System Inter-
face (SCSI) host adapters, Universal Serial Bus (USB) host
adapters, Institute of Electrical and Electronics Engineers
(IEEE) 1394 host adapters, Advanced Technology Attach-
ment (ATA), Parallel ATA (PATA), Serial ATA (SATA), and
External SATA (eSATA) host adapters, Fibre Channel inter-
face adapters, Ethernet adapters, or the like. Communication
interface 622 may also allow computing system 610 to
engage in distributed or remote computing. For example,
communication interface 622 may receive instructions from a
remote device or send instructions to a remote device for
execution.

As illustrated in FIG. 6, computing system 610 may also
include at least one display device 624 coupled to communi-
cation infrastructure 612 via a display adapter 626. Display
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device 624 generally represents any type or form of device
capable of visually displaying information forwarded by dis-
play adapter 626. Similarly, display adapter 626 generally
represents any type or form of device configured to forward
graphics, text, and other data from communication infrastruc-
ture 612 (or from a frame buffer, as known in the art) for
display on display device 624.

As illustrated in FIG. 6, exemplary computing system 610
may also include at least one input device 628 coupled to
communication infrastructure 612 via an input interface 630.
Input device 628 generally represents any type or form of
input device capable of providing input, either computer or
human generated, to exemplary computing system 610.
Examples of input device 628 include, without limitation, a
keyboard, a pointing device, a speech recognition device, or
any other input device.

As illustrated in FIG. 6, exemplary computing system 610
may also include a primary storage device 632 and a backup
storage device 633 coupled to communication infrastructure
612 via a storage interface 634. Storage devices 632 and 633
generally represent any type or form of storage device or
medium capable of storing data and/or other computer-read-
able instructions. For example, storage devices 632 and 633
may be a magnetic disk drive (e.g., a so-called hard drive), a
solid state drive, a floppy disk drive, a magnetic tape drive, an
optical disk drive, a flash drive, or the like. Storage interface
634 generally represents any type or form of interface or
device for transferring data between storage devices 632 and
633 and other components of computing system 610. In one
example, reputation database 120 from FIG. 1 may be stored
in primary storage device 632.

In certain embodiments, storage devices 632 and 633 may
be configured to read from and/or write to a removable stor-
age unit configured to store computer software, data, or other
computer-readable information. Examples of suitable remov-
able storage units include, without limitation, a floppy disk, a
magnetic tape, an optical disk, a flash memory device, or the
like. Storage devices 632 and 633 may also include other
similar structures or devices for allowing computer software,
data, or other computer-readable instructions to be loaded
into computing system 610. For example, storage devices 632
and 633 may be configured to read and write software, data, or
other computer-readable information. Storage devices 632
and 633 may also be a part of computing system 610 or may
be a separate device accessed through other interface sys-
tems.

Many other devices or subsystems may be connected to
computing system 610. Conversely, all of the components
and devices illustrated in FIG. 6 need not be present to prac-
tice the embodiments described and/or illustrated herein. The
devices and subsystems referenced above may also be inter-
connected in different ways from that shown in FIG. 6. Com-
puting system 610 may also employ any number of software,
firmware, and/or hardware configurations. For example, one
or more of the exemplary embodiments disclosed herein may
be encoded as a computer program (also referred to as com-
puter software, software applications, computer-readable
instructions, or computer control logic) on a computer-read-
able medium. The term “computer-readable medium,” as
used herein, generally refers to any form of device, carrier, or
medium capable of storing or carrying computer-readable
instructions. Examples of computer-readable media include,
without limitation, transmission-type media, such as carrier
waves, and non-transitory-type media, such as magnetic-stor-
age media (e.g., hard disk drives, tape drives, and floppy
disks), optical-storage media (e.g., Compact Disks (CDs),
Digital Video Disks (DVDs), and BLU-RAY disks), elec-
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tronic-storage media (e.g., solid-state drives and flash media),
and other distribution systems.

The computer-readable medium containing the computer
program may be loaded into computing system 610. All or a
portion of the computer program stored on the computer-
readable medium may then be stored in system memory 616
and/or various portions of storage devices 632 and 633. When
executed by processor 614, a computer program loaded into
computing system 610 may cause processor 614 to perform
and/or be a means for performing the functions of one or more
of the exemplary embodiments described and/or illustrated
herein. Additionally or alternatively, one or more of the exem-
plary embodiments described and/or illustrated herein may
be implemented in firmware and/or hardware. For example,
computing system 610 may be configured as an Application
Specific Integrated Circuit (ASIC) adapted to implement one
or more of the exemplary embodiments disclosed herein.

FIG. 7 is a block diagram of an exemplary network archi-
tecture 700 in which client systems 710, 720, and 730 and
servers 740 and 745 may be coupled to a network 750. As
detailed above, all or a portion of network architecture 700
may perform and/or be a means for performing, either alone
or in combination with other elements, one or more of the
steps disclosed herein (such as one or more of the steps
illustrated in FIG. 3). All or a portion of network architecture
700 may also be used to perform and/or be a means for
performing other steps and features set forth in the instant
disclosure.

Client systems 710, 720, and 730 generally represent any
type or form of computing device or system, such as exem-
plary computing system 610 in FIG. 6. Similarly, servers 740
and 745 generally represent computing devices or systems,
such as application servers or database servers, configured to
provide various database services and/or run certain software
applications. Network 750 generally represents any telecom-
munication or computer network including, for example, an
intranet, a WAN, a LAN, a PAN, or the Internet. In one
example, client systems 710, 720, and/or 730 and/or servers
740 and/or 745 may include all or a portion of system 100
from FIG. 1.

As illustrated in FIG. 7, one or more storage devices 760
(1)-(N) may be directly attached to server 740. Similarly, one
or more storage devices 770(1)-(N) may be directly attached
to server 745. Storage devices 760(1)-(N) and storage devices
770(1)-(N) generally represent any type or form of storage
device or medium capable of storing data and/or other com-
puter-readable instructions. In certain embodiments, storage
devices 760(1)-(N) and storage devices 770(1)-(N) may rep-
resent Network-Attached Storage (NAS) devices configured
to communicate with servers 740 and 745 using various pro-
tocols, such as Network File System (NFS), Server Message
Block (SMB), or Common Internet File System (CIFS).

Servers 740 and 745 may also be connected to a Storage
Area Network (SAN) fabric 780. SAN fabric 780 generally
represents any type or form of computer network or architec-
ture capable of facilitating communication between a plural-
ity of storage devices. SAN fabric 780 may facilitate commu-
nication between servers 740 and 745 and a plurality of
storage devices 790(1)-(N) and/or an intelligent storage array
795. SAN fabric 780 may also facilitate, via network 750 and
servers 740 and 745, communication between client systems
710, 720, and 730 and storage devices 790(1)-(N) and/or
intelligent storage array 795 in such a manner that devices
790(1)-(N) and array 795 appear as locally attached devices
to client systems 710, 720, and 730. As with storage devices
760(1)-(N) and storage devices 770(1)-(N), storage devices
790(1)-(N) and intelligent storage array 795 generally repre-
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sent any type or form of storage device or medium capable of
storing data and/or other computer-readable instructions.

In certain embodiments, and with reference to exemplary
computing system 610 of FIG. 6, a communication interface,
such as communication interface 622 in FIG. 6, may be used
to provide connectivity between each client system 710, 720,
and 730 and network 750. Client systems 710, 720, and 730
may be able to access information on server 740 or 745 using,
for example, a web browser or other client software. Such
software may allow client systems 710, 720, and 730 to
access data hosted by server 740, server 745, storage devices
760(1)-(N), storage devices 770(1)-(N), storage devices 790
(1)-(N), or intelligent storage array 795. Although FIG. 7
depicts the use of a network (such as the Internet) for
exchanging data, the embodiments described and/or illus-
trated herein are not limited to the Internet or any particular
network-based environment.

In at least one embodiment, all or a portion of one or more
of the exemplary embodiments disclosed herein may be
encoded as a computer program and loaded onto and executed
by server 740, server 745, storage devices 760(1)-(N), storage
devices 770(1)-(N), storage devices 790(1)-(N), intelligent
storage array 795, or any combination thereof. All or a portion
of one or more of the exemplary embodiments disclosed
herein may also be encoded as a computer program, stored in
server 740, run by server 745, and distributed to client sys-
tems 710, 720, and 730 over network 750.

As detailed above, computing system 610 and/or one or
more components of network architecture 700 may perform
and/or be a means for performing, either alone or in combi-
nation with other elements, one or more steps of an exemplary
method for detecting malware using file clustering.

While the foregoing disclosure sets forth various embodi-
ments using specific block diagrams, flowcharts, and
examples, each block diagram component, flowchart step,
operation, and/or component described and/or illustrated
herein may be implemented, individually and/or collectively,
using a wide range of hardware, software, or firmware (or any
combination thereof) configurations. In addition, any disclo-
sure of components contained within other components
should be considered exemplary in nature since many other
architectures can be implemented to achieve the same func-
tionality.

Insome examples, all or a portion of exemplary system 100
in FIG. 1 may represent portions of a cloud-computing or
network-based environment. Cloud-computing environ-
ments may provide various services and applications via the
Internet. These cloud-based services (e.g., software as a ser-
vice, platform as a service, infrastructure as a service, etc.)
may be accessible through a web browser or other remote
interface. Various functions described herein may be pro-
vided through a remote desktop environment or any other
cloud-based computing environment.

In various embodiments, all or a portion of exemplary
system 100 in FIG. 1 may facilitate multi-tenancy within a
cloud-based computing environment. In other words, the
software modules described herein may configure a comput-
ing system (e.g., a server) to facilitate multi-tenancy for one
or more of the functions described herein. For example, one
or more of the software modules described herein may pro-
gram a server to enable two or more clients (e.g., customers)
to share an application that is running on the server. A server
programmed in this manner may share an application, oper-
ating system, processing system, and/or storage system
among multiple customers (i.e., tenants). One or more of the
modules described herein may also partition data and/or con-
figuration information of a multi-tenant application for each
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customer such that one customer cannot access data and/or
configuration information of another customer.

According to various embodiments, all or a portion of
exemplary system 100 in FIG. 1 may be implemented within
a virtual environment. For example, the modules and/or data
described herein may reside and/or execute within a virtual
machine. As used herein, the term “virtual machine” gener-
ally refers to any operating system environment that is
abstracted from computing hardware by a virtual machine
manager (e.g., a hypervisor). Additionally or alternatively,
the modules and/or data described herein may reside and/or
execute within a virtualization layer. As used herein, the term
“virtualization layer” generally refers to any data layer and/or
application layer that overlays and/or is abstracted from an
operating system environment. A virtualization layer may be
managed by a software virtualization solution (e.g., a file
system filter) that presents the virtualization layer as though it
were part of an underlying base operating system. For
example, a software virtualization solution may redirect calls
that are initially directed to locations within a base file system
and/or registry to locations within a virtualization layer.

In some examples, all or a portion of exemplary system 100
in FIG. 1 may represent portions of a mobile computing
environment. Mobile computing environments may be
implemented by a wide range of mobile computing devices,
including mobile phones, tablet computers, e-book readers,
personal digital assistants, wearable computing devices (e.g.,
computing devices with a head-mounted display, smart-
watches, etc.), and the like. In some examples, mobile com-
puting environments may have one or more distinct features,
including, for example, reliance on battery power, presenting
only one foreground application at any given time, remote
management features, touchscreen features, location and
movement data (e.g., provided by Global Positioning Sys-
tems, gyroscopes, accelerometers, etc.), restricted platforms
that restrict modifications to system-level configurations and/
or that limit the ability of third-party software to inspect the
behavior of other applications, controls to restrict the instal-
lation of applications (e.g., to only originate from approved
application stores), etc. Various functions described herein
may be provided for a mobile computing environment and/or
may interact with a mobile computing environment.

In addition, all or a portion of exemplary system 100 in
FIG. 1 may represent portions of, interact with, consume data
produced by, and/or produce data consumed by one or more
systems for information management. As used herein, the
term “information management” may refer to the protection,
organization, and/or storage of data. Examples of systems for
information management may include, without limitation,
storage systems, backup systems, archival systems, replica-
tion systems, high availability systems, data search systems,
virtualization systems, and the like.

In some embodiments, all or a portion of exemplary system
100 in FIG. 1 may represent portions of, produce data pro-
tected by, and/or communicate with one or more systems for
information security. As used herein, the term “information
security” may refer to the control of access to protected data.
Examples of systems for information security may include,
without limitation, systems providing managed security ser-
vices, data loss prevention systems, identity authentication
systems, access control systems, encryption systems, policy
compliance systems, intrusion detection and prevention sys-
tems, electronic discovery systems, and the like.

According to some examples, all or a portion of exemplary
system 100 in FIG. 1 may represent portions of, communicate
with, and/or receive protection from one or more systems for
endpoint security. As used herein, the term “endpoint secu-

10

15

20

25

30

35

40

45

50

55

60

65

18

rity” may refer to the protection of endpoint systems from
unauthorized and/or illegitimate use, access, and/or control.
Examples of systems for endpoint protection may include,
without limitation, anti-malware systems, user authentication
systems, encryption systems, privacy systems, spam-filtering
services, and the like.

The process parameters and sequence of steps described
and/or illustrated herein are given by way of example only
and can be varied as desired. For example, while the steps
illustrated and/or described herein may be shown or discussed
in a particular order, these steps do not necessarily need to be
performed in the order illustrated or discussed. The various
exemplary methods described and/or illustrated herein may
also omit one or more of the steps described or illustrated
herein or include additional steps in addition to those dis-
closed.

While various embodiments have been described and/or
illustrated herein in the context of fully functional computing
systems, one or more of these exemplary embodiments may
be distributed as a program product in a variety of forms,
regardless of the particular type of computer-readable media
used to actually carry out the distribution. The embodiments
disclosed herein may also be implemented using software
modules that perform certain tasks. These software modules
may include script, batch, or other executable files that may
be stored on a computer-readable storage medium or in a
computing system. In some embodiments, these software
modules may configure a computing system to perform one
or more of the exemplary embodiments disclosed herein.

In addition, one or more of the modules described herein
may transform data, physical devices, and/or representations
of physical devices from one form to another. For example,
one or more of the modules recited herein may receive data to
be transformed, transform the data, use the result of the trans-
formation to classify one or more files as safe or malicious,
and store the result of the transformation to classity the files
for later reference. Modules described herein may also trans-
form a physical computing system into a system for detecting
malware using file clustering. Additionally or alternatively,
one or more of the modules recited herein may transform a
processor, volatile memory, non-volatile memory, and/or any
other portion of a physical computing device from one form
to another by executing on the computing device, storing data
on the computing device, and/or otherwise interacting with
the computing device.

The preceding description has been provided to enable
others skilled in the art to best utilize various aspects of the
exemplary embodiments disclosed herein. This exemplary
description is not intended to be exhaustive or to be limited to
any precise form disclosed. Many modifications and varia-
tions are possible without departing from the spirit and scope
of the instant disclosure. The embodiments disclosed herein
should be considered in all respects illustrative and not
restrictive. Reference should be made to the appended claims
and their equivalents in determining the scope of the instant
disclosure.

Unless otherwise noted, the terms “connected to” and
“coupled to” (and their derivatives), as used in the specifica-
tion and claims, are to be construed as permitting both direct
and indirect (i.e., via other elements or components) connec-
tion. In addition, the terms “a” or “an,” as used in the speci-
fication and claims, are to be construed as meaning “at least
one of.” Finally, for ease of use, the terms “including” and
“having” (and their derivatives), as used in the specification
and claims, are interchangeable with and have the same
meaning as the word “comprising.”
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What is claimed is:

1. A computer-implemented method for detecting malware
using file clustering, at least a portion of the method being
performed by a computing device comprising at least one
processor, the method comprising:

identifying an unknown file with an unknown reputation;

identifying at least one known file with a known reputation

that co-occurs with the unknown file;

identifying a classification assigned to the known file;

determining a probability that the unknown file is of the

same classification as the known file;

assigning, based on the probability that the unknown file is

of the same classification as the known file, the classifi-
cation of the known file to the unknown file wherein
identifying the unknown file comprises:

obtaining, from at least one client device, information that

identifies the unknown file;

querying, using the information that identifies the

unknown file, a file reputation database that associates
file information with file reputations;

receiving, in response to querying the file reputation data-

base, an indication that the unknown file’s reputation is
unknown.

2. The computer-implemented method of claim 1, wherein
identifying the classification assigned to the known file com-
prises:

querying, using information that identifies the known file,

afile reputation database that associates file information
with file reputations;

receiving, in response to querying the file reputation data-

base, a reputation for the known file that indicates the
known file’s trustworthiness.

3. The computer-implemented method of claim 1, wherein
identifying the known file that co-occurs with the unknown
file comprises:

identifying a set of client devices on which the known file

occurs;

identifying a set of client devices on which the unknown

file occurs;

comparing the set of client devices on which the known file

occurs with the set of client devices on which the
unknown file occurs to identify the client devices on
which the known file co-occurs with the unknown file.

4. The computer-implemented method of claim 3, wherein
determining the probability that the unknown file is of the
same classification as the known file comprises calculating a
Jaccard similarity between the set of client devices on which
the known file occurs and the set of client devices on which
the unknown file occurs by dividing the number of client
devices on which the known file co-occurs with the unknown
file by the number of client devices on which either the known
file or the unknown file occurs.

5. The computer-implemented method of claim 3, wherein
determining the probability that the unknown file is of the
same classification as the known file comprises clustering the
set of client devices on which the known file occurs and the set
of client devices on which the unknown file occurs using at
least one hashing function that assigns sets of client devices to
clusters according a client device selected from the set of
client devices on which the known file or the unknown file
occur.

6. The computer-implemented method of claim 1, wherein
assigning, based on the probability that the unknown file is of
the same classification as the known file, the classification of
the known file to the unknown file comprises:

constructing a bipartite graph comprising a set of cluster

nodes representing each client device cluster and a set of
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file nodes representing the known file and the unknown
file, wherein cluster nodes are connected through edges
to file nodes according to the occurrence of the file
corresponding to the file node on the set of client devices
represented by the cluster node;

iteratively propagating the classification of the known file
to the unknown file according to the probability that the
unknown file is of the same classification as the known
file.

7. The computer-implemented method of claim 6, wherein
iteratively propagating the classification of the known file to
the unknown file comprises:

determining a prior for each cluster node in the graph based
on an assessment of a probability that the client devices
represented by the cluster node contain malware;

determining a prior of each file node in the graph based on
an assessment of a probability that the file represented
by the file node includes malware;

determining an edge potential for each edge in the graph
based on a relationship between nodes connected by the
edge;

iteratively propagating the probability of the known file
among the nodes by transmitting messages along the
edges in the graph, wherein a message transmitted by the
node is generated based on both the prior of the node and
messages received by the node during any previous
iteration;

determining a classification for the unknown file based on
the probability associated with the corresponding file
node.

8. The computer-implemented method of claim 7, wherein
iteratively propagating the classification terminates when at
least one of:

the probability for the file node representing the unknown
file converges within a threshold value;

a predetermined number of iterations have been com-
pleted.

9. A system for detecting malware using file clustering, the

system comprising:

an identification module, stored in memory, that:
identifies an unknown file with an unknown reputation;
identifies at least one known file with a known reputation

that co-occurs with the unknown file;

a reputation module, stored in memory, that identifies a
classification assigned to the known file;

an evaluation module, stored in memory, that determines a
probability that the unknown file is of the same classifi-
cation as the known file;

a classification module, stored in memory, that assigns,
based on the probability that the unknown file is of the
same classification as the known file, the classification
of the known file to the unknown file;

at least one physical processor configured to execute the
identification module, the reputation module, the evalu-
ation module, and the classification module;

wherein the identification module identifies the unknown
file by:

obtaining, from at least one additional client device, infor-
mation that identifies the unknown file;

querying, using the information that identifies the
unknown file, a file reputation database that associates
file information with file reputations;

receiving, in response to querying the file reputation data-
base, an indication that the unknown file’s reputation is
unknown.

10. The system of claim 9, wherein the reputation module

identifies the classification assigned to the known file by:
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querying, using information that identifies the known file,
afile reputation database that associates file information
with file reputations;

receiving, in response to querying the file reputation data-

base, a reputation for the known file that indicates the
known file’s trustworthiness.

11. The system of claim 9, wherein the identification mod-
ule identifies the known file that co-occurs with the unknown
file by:

identifying a set of client devices on which the known file

occurs;

identifying a set of client devices on which the unknown

file occurs;

comparing the set of client devices on which the known file

occurs with the set of client devices on which the
unknown file occurs to identify the client devices on
which the known file co-occurs with the unknown file.

12. The system of claim 11, wherein the evaluation module
determines the probability that the unknown file is of the same
classification as the known file by calculating a Jaccard simi-
larity between the set of client devices on which the known
file occurs and the set of client devices on which the unknown
file occurs by dividing the number of client devices on which
the known file co-occurs with the unknown file by the number
of client devices on which either the known file or the
unknown file occurs.

13. The system of claim 11, wherein the evaluation module
determines the probability that the unknown file is of the same
classification as the known file by clustering the set of client
devices on which the known file occurs and the set of client
devices on which the unknown file occurs using at least one
hashing function that assigns sets of client devices to clusters
according to a client device selected from the set of client
devices on which the known file or the unknown file occur.

14. The system of claim 9, wherein the classification mod-
ule assigns, based on the probability that the unknown file is
of the same classification as the known file, the classification
of the known file to the unknown file by:

constructing a bipartite graph comprising a set of cluster

nodes representing each client device cluster and a set of
file nodes representing the known file and the unknown
file, wherein cluster nodes are connected through edges
to file nodes according to the occurrence of the file
corresponding to the file node on the set of client devices
represented by the cluster node;

iteratively propagating the classification of the known file

to the unknown file according to the probability that the
unknown file is of the same classification as the known
file.
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15. The system of claim 14, wherein the classification
module iteratively propagates the classification of the known
file to the unknown file by:
determining a prior for each cluster node in the graph based
on an assessment of a probability that the client devices
represented by the cluster node contain malware;

determining a prior of each file node in the graph based on
an assessment of a probability that the file represented
by the file node includes malware;

determining an edge potential for each edge in the graph

based on a relationship between nodes connected by the
edge;

iteratively propagating the probability of the known file

among the nodes by transmitting messages along the
edges in the graph, wherein a message transmitted by the
node is generated based on both the prior of the node and
messages received by the node during any previous
iteration;

determining a classification for the unknown file based on

the probability associated with the corresponding file
node.

16. The system of claim 14, wherein the classification
module terminates iteratively propagating the classification
when at least one of:

the probability for the file node representing the unknown

file converges within a threshold value;

a predetermined number of iterations have been com-

pleted.

17. A non-transitory computer-readable medium compris-
ing one or more computer-readable instructions that, when
executed by at least one processor of a computing device,
cause the computing device to:

identify an unknown file with an unknown reputation;

identify at least one known file with a known reputation

that co-occurs with the unknown file;

identify a classification assigned to the known file;

determine a probability that the unknown file is of the same

classification as the known file;

assign, based on the probability that the unknown file is of

the same classification as the known file, the classifica-
tion of the known file to the unknown file wherein the
one or more computer-readable instructions cause the
computing device to determine the probability that the
unknown file is of the same classification as the known
file by clustering a set of client devices on which the
known file occurs and a set of client devices on which the
unknown file occurs using at least one hashing function
that assigns sets of client devices to clusters according to
a client device selected from the set of client devices on
which the known file or the unknown file occur.
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